

APPROVAL SHEET

WR12, WR08, WR06, WR04

±1%, ±5%

Thick Film General Purpose Chip Resistors Size 1206, 0805, 0603, 0402 RoHS 2 compliant & Halogen free

*Contents in this sheet are subject to change without prior notice.

FEATURE

- 1. High reliability and stability
- 2. Reduced size of final equipment
- 3. Lower assembly costs
- 4. Higher component and equipment reliability
- 5. RoHS 2 compliant and Halogen free products

APPLICATION

- · Consumer electrical equipment
- EDP, Computer application
- Telecom application

DESCRIPTION

The resistors are constructed in a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate. The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to within tolerance by laser cutting of this resistive layer.

The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is a Tin (lead free) alloy.

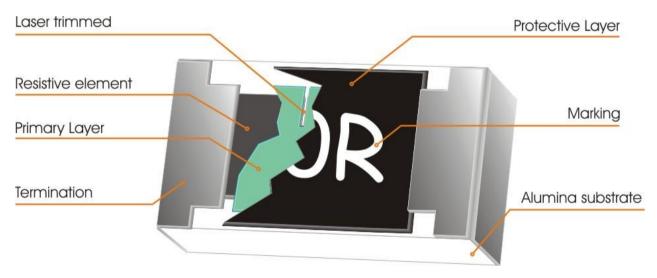
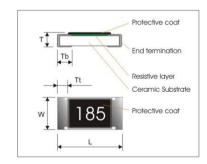


Fig 1. Construction of Chip-R

QUICK REFERENCE DATA


Item	General Specification							
Series No.	WF	R12	WR08		WR06		WR04	
Size code	1206(3216)	0805(2012)	0603(1608)	0402	(1005)
Resistance Range			1Ω~′	10MΩ (±5%	tolerance), J	umper		
			1	Ω~10MΩ (±	1% tolerance	∍),		
Resistance Tolerance	±1%	±5%	±1%	±5%	±1%	±5%	±1%	±5%
	E96/E24	E24	E96/E24	E24	E96/E24	E24	E96/E24	E24
TCR (ppm/°C)								
10MΩ ≥R > 10Ω				≤ ±	100			
R≤10Ω				-200	~+400			
Max. dissipation @ T _{amb} =70°C	1/4	W	1/8	W	1/10) W	1/1	6 W
Max. Operation Voltage (DC or RMS)	200V 150V 75V 50V					0V		
Max. Overload Voltage (DC or RMS)	400	400V 300V 150V 100V)0V	
Climatic category				55/1	55/56			

Note:

- 1. This is the maximum voltage that may be continuously supplied to the resistor element, see "IEC publication 60115-8"
- 2. Max. Operation Voltage : So called RCWV (Rated Continuous Working Voltage) is determined by $RCWV = \sqrt{RatedPower \times Resistance \ Value} \text{ or Max. RCWV listed above, whichever is lower.}$
- 3. The resistance of Jumper is defined $< 0.05\Omega$.

DIMENSIONS (unit: mm)

	WR12	WR08	WR06	WR04
L	3.10 ± 0.10	2.00 ± 0.10	1.60 ± 0.10	1.00 ± 0.05
W	1.60 ± 0.10	1.25 ± 0.10	0.80 ± 0.10	0.50 ± 0.05
Т	0.60 ± 0.15	0.50 ± 0.15	0.45 ± 0.15	0.35 ± 0.05
Tb	0.45 ± 0.20	0.40 ± 0.20	0.30 ± 0.15	0.25 ± 0.10
Tt	0.50 ± 0.20	0.40 ± 0.20	0.30 ± 0.10	0.20 ± 0.10

MARKING

Size \ Nr. Of digit of code\tolerance	±5%	±1%
1206 (3216)	3-digits marking	4-digits marking
0805 (2012)	3-digits marking	4-digits marking
0603 (1608)	3-digits marking	3-digits marking
0402(1005)	N0 MA	RKING

3-digits marking (±5%: 1206 & 0805 & 0603)

Each resistor is marked with a three digits code on the protective coating to designate the nominal resistance value.

3-digits marking (±1%:0603)

Nomina	l resistan	се			Description										
1.E-24 s	series			As <i>0603</i>	WR06X	±5%.									
2.E-96 s	series			The 1st to	two digit o	codes ar	e referrin	g to the	CODE or	the tab	le, the 3rd	d code is	s the inde	x of resi	stance
				Y=10 ⁻² ,	X=10 ⁻¹ ,	A=10 ⁰ ,	B=10 ¹ ,	C=10 ² ,	D=10 ³ ,	E=10 ⁴ ,	F=10 ⁵				
						EX:	17.8 Ω=	25X,17	'8Ω=25A	,1K78	=25B				
							17K8=2	25C · 17	'8K=25D	, 1M78	=25E				
3. Rema	ark			There is	no marki	ng for th	e items a	re not u	nder E-24	and E-	96 series				
CODE	R_value	CODE	R_value	CODE	R_Value	CODE	R_value	CODE	R_value	CODE	R_value	CODE	R_value	CODE	R_value
01	100	13	133	25	178	37	237	49	316	61	422	73	562	85	750
02	102	14	137	26	182	38	243	50	324	62	432	74	576	86	768
03	105	15	140	27	187	39	249	51	332	63	442	75	590	87	787
04	107	16	143	28	191	40	255	52	340	64	453	76	604	88	806
05	110	17	147	29	196	41	261	53	348	65	464	77	619	89	825
06	113	18	150	30	200	42	267	54	357	66	475	78	634	90	845
07	115	19	154	31	205	43	274	55	365	67	487	79	649	91	866
08	118	20	158	32	210	44	280	56	374	68	499	80	665	92	887
09	121	21	162	33	33 215 45 287 57 383 69 511 81 681 93 90						909				
10	124	22	165	34	34 221 46 294 58 392 70 523 82 698 94 9						931				
11	127	23	169	35	85 226 47 301 59 402 71 536 83 715 95						953				
12	130	24	174	36	232	48	309	60	412	72	549	84	732	96	976

4-digits marking (\pm 1%: 1206/0805)

Each resistor is marked with a four digits code on the protective coating to designate the nominal resistance value.

Example

RESISTANCE	10Ω	12Ω	100Ω	6800Ω	47000Ω
3-digits marking (1206 & 0805 & 0603 ±5%)	100	120	101	682	473
4-digits marking	10R0	12R0	1000	6801	4702

FUNCTIONAL DESCRIPTION

Product characterization

Standard values of nominal resistance are taken from the E24 series for resistors with a tolerance of $\pm 5\%$, and E96 series for resistors with a tolerance of $\pm 1\%$. The values of the E24/E96 series are in accordance with "IEC publication 60063"

Derating

The power that the resistor can dissipate depends on the operating temperature; see Fig.2

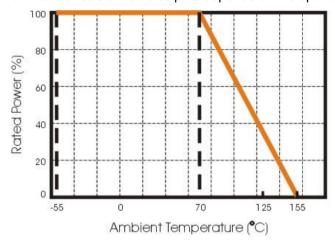


Figure 2 Maximum dissipation in percentage of rated power as a function of the ambient temperature for WR12, WR08, WR06, WR04

MOUNTING

Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems.

Chip placement can be on ceramic substrates and printed-circuit boards (PCBs).

Electrical connection to the circuit is by individual soldering condition.

Storage and Handling Conditions:

- 1. Products are recommended to be used up within two years since operation date as ensured shelf life. Check solderability in case shelf life extension is needed.
- 2. To store products with following condition:

Temperature :5 to 40°C

Humidity :20 to 70% relative humidity

- 3. Caution:
 - a.Don't store products in a corrosive environment such as sulfide, chloride gas, or acid.

It may cause oxdization of electrode, which easily be resulted in poor soldering

- b.To store products on the shelf and avoid exposure to moisture.
- c.Don't expose products to excessive shock, vibration, direct sunlight and so on

SOLDERING CONDITION follows J-STD-020D

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 235°C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3.

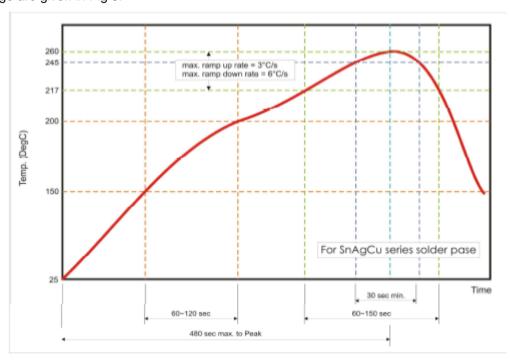


Fig 3. Infrared soldering profile for Chip Resistors

CATALOGUE NUMBERS

The resistors have a catalogue number starting with

WR12	x	472_	J	Т	L
Size code	Type code	Resistance code	Tolerance	Packaging code	Termination code
WR12: 1206 WR08: 0805 WR06: 0603 WR04: 0402	$\bf X$: Jumper $\pm 5\%$, $1\Omega \sim 10 M\Omega$ $\pm 1\%$, $10\Omega \sim 1 M\Omega$ $\bf W$: $\pm 1\%$, < 10Ω ; > $1 M\Omega$	\pm 5%, E24: 2 significant digits followed by no. of zeros and a blank 4.7Ω =4R7_ \pm 10Ω =100_ \pm 220Ω =221_ Jumper =000_ ("_" means a blank) \pm 1%, E24+E96: 3 significant digits followed by no. of zeros \pm 102Ω =1020 \pm 37.4KΩ =3742	F:±1% J:±5% P:Jumper	T: 7" Reeled taping Q: 10" Reeled taping G: 13" Reeled taping H: 13" reel 50Kpcs only for 0402 B: Bulk D: 7" reel 20Kpcs only for 0402 A: 7" reel 15Kpcs only for 0402	L= Sn base (lead free)

WR12, WR08, WR06:

1. Reeled tape packaging: 8mm width paper taping 5000pcs per 7" reel, 10kpcs per 10" reel, 20kpcs per 13" reel.

2. Bulk packaging : 5000pcs per poly-bag

WR04:

1. Reeled tape packaging: 8mm width paper taping 10,000pcs per 7" reel, 20,000pcs per 10" reel. 70,000pcs per 13" reel.

2. Bulk packaging : 10,000pcs per poly-bag

TEST AND REQUIREMENTS

Essentially all tests are carried out according to the schedule of IEC publication 115-8, category LCT/UCT/56(rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days). The testing also meets the requirements specified by EIA, EIAJ and JIS.

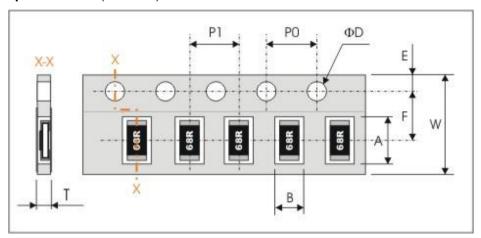
The tests are carried out in accordance with IEC publication 68, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to IEC 60068-1, subclause 5.3. Unless otherwise specified, the following value supplied:

Temperature: 15°C to 35°C. Relative humidity: 45% to 75%.

Air pressure: 86kPa to 106 kPa (860 mbar to 1060 mbar). All soldering tests are performed with midly activated flux.

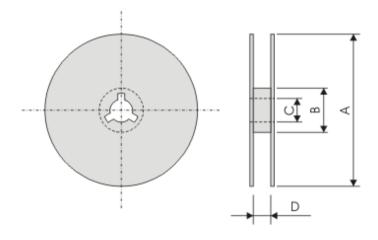
TEST	PROCEDURE / TEST METUOR	REQUIREMENT	
TEST	PROCEDURE / TEST METHOD	Resistor	0Ω
Electrical Characteristics	- DC resistance values measurement - Temperature Coefficient of Resistance (T.C.R)	Within the specified tolerance Refer to "QUICK REFERENCE	
	Natural resistance change per change in degree centigrade.	DATA"	
JISC5201-1: 1998 Clause 4.8	$\frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (ppm/°C)} t_1 : 20^{\circ}\text{C} + 5^{\circ}\text{C} - 1^{\circ}\text{C}; \ t_2 : -55^{\circ}\text{C or } + 155^{\circ}\text{C}$		<50mΩ
	R ₁ : Resistance at reference temperature (20°C+5°C/-1°C)		
	R ₂ : Resistance at test temperature (-55°C or +155°C)		
Resistance to soldering heat(R.S.H) JISC5201-1:1998 Clause 4.18	Un-mounted chips completely immersed for 10±1second in a SAC solder bath at 260°C±5°C	±5%:ΔR/Rmax.±(1%+0.05Ω) ±1%:ΔR/Rmax.±(0.5%+0.05Ω) no visible damage	<50mΩ
Solderability	Un-mounted chips completely immersed for 2±0.5 second in a SAC solder bath at 235°C ±5°C	95% coverage min., good tinnin	g and no
JISC5201-1: 1998	Solder Datifi at 235 (±5 (visible damage	9
Clause 4.17		3	
Temperature cycling	30 minutes at -55°C±3°C, 2~3 minutes at 20°C+5°C-1°C, 30 minutes at	\pm 5%: ΔR/R max. \pm (1%+0.05Ω)	
JISC5201-1: 1998	+155°C±3°C, 2~3 minutes at 20°C+5°C-1°C, total 5 continuous cycles	±1%:ΔR/Rmax.±(0.5%+0.05Ω)	$<$ 50m Ω
Clause 4.19		No visible damage	
High Temperature	1000+48/-0 hours; without load in a temperature chamber	±5%:ΔR/Rmax.±(2%+0.1Ω)	
Exposure	controlled 155±3°C	±1%:ΔR/Rmax.±(1%+0.1Ω)	<50mΩ
MIL-STD-202		No visible damage	<3011152
method 108			
Bending strength	Resistors mounted on a 90mm glass epoxy resin PCB(FR4), bending	±5%:ΔR/Rmax.±(1%+0.05Ω)	
JISC5201-1: 1998	once 3mm for 10sec, 5mm for WR04	±1%:ΔR/Rmax.±(1%+0.05Ω)	$<$ 50m Ω
Clause 4.33		No visual damaged	
Adhesion	Pressurizing force: 5N, Test time: 10±1sec.	No remarkable damage or remo	val of the
JISC5201-1: 1998		terminations	
Clause 4.32			
Short Time Overload	2.5 times RCWV or max. overload voltage, for 5seconds	\pm 5%: ΔR/R max. \pm (2%+0.05Ω)	
(STOL)		\pm 1%: ΔR/R max. \pm (1%+0.05Ω)	<50mΩ
JISC5201-1: 1998		No visible damage	<20011175
Clause 4.13			

TEST	DDOCEDURE / TEST METHOD	REQUIREMENT	
IESI	PROCEDURE / TEST METHOD	Resistor	0Ω
Load life in Humidity	1000 +48/-0 hours, loaded with RCWV or Vmax in humidity chamber	\pm 5%: Δ R/R max. \pm (2%+0.1 Ω)	
JISC5201-1: 1998	controller at 40°C±2°C and 90~95% relative humidity, 1.5hours on and 0.5 hours off	±1%: ΔR/R max. ±(1%+0.1Ω)	<50mΩ
Clause 4.24	o.o flouis off	No visible damage	
Load life (endurance)	1000 +48/-0 hours, loaded with RCWV or Vmax in chamber controller	\pm 5%: ΔR/R max. \pm (3%+0.1Ω)	
JISC5201-1: 1998	70±2°C, 1.5 hours on and 0.5 hours off	\pm 1%: ΔR/R max. \pm (1%+0.1Ω)	<50mΩ
Clause 4.25		No visible damage	
Insulation Resistance	Apply the maximum overload voltage (DC) for 1minute	R≧10GΩ	
JISC5201-1: 1998 Clause 4.6			
Dielectric Withstand	Apply the maximum overload voltage (AC) for 1 minute	No breakdown or flashover	
Voltage	Pappy the material eventual contage (i.e., i.e. i immate		
JISC5201-1: 1998			
Clause 4.7			


TEST CONDITION FOR JUMPER (0 Ω)

Item	WR12	WR08	WR06	WR04		
Power Rating At 70°C	1/4W	1/8W	1/10W	1/16W		
Resistance	MAX.50m $Ω$					
Rated Current	2A	1.5A	1A	1A		
Peak Current	5A	3.5A	3A	2A		
Operating Temperature	-55 ~ +155°C					

PACKAGING


Paper Tape specifications (unit :mm)

Series No.	А	В	W	F	E
WR12	3.60±0.20	2.00±0.20			
WR08	2.40±0.20	1.65±0.20	8.00±0.30	2.50+0.20	1.75+0.10
WR06	1.90±0.20	1.10±0.20	6.00±0.30	3.50±0.20	1.75±0.10
WR04	1.20±0.10	0.70±0.10			

Series No.	P1	P0	ΦD	Т
WR12 / WR08	4.00±0.10			Max. 1.0
WR06	4.00±0.10	4.00±0.10	Φ 1.50 $^{+0.1}_{-0.0}$	0.65±0.05
WR04	2.00±0.10			0.40±0.05

7" Reel dimensions

Symbol	А	В	С	D
7" reel	Φ178.0±2.0	Φ60.0±1.0	13.0±0.2	9.0±0.5
10" reel	Ф254.0±2.0	Φ100.0±1.0	13.0±0.2	9.0±0.5
13" reel	Ф330.0±2.0	Φ100.0±1.0	13.0±0.2	9.0±0.5

APPROVAL SHEET

WR18X(W), WR20X(W), WR25X(W)

±1%, ±5%

Thick Film Power Chip Resistors

Size 1218,2010,2512

*Contents in this sheet are subject to change without prior notice.

FEATURE

- 1. High power rating and compact size
- 2. High reliability and stability
- 3. Reduced size of final equipment
- 4. RoHS compliant and Lead free products

APPLICATION

- Power supply
- PDA
- Digital meter
- Computer
- Automotives
- Battery charger
- DC-DC power converter

DESCRIPTION

The resistors are constructed in a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate. The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to nominated value within tolerance which controlled by laser trimming of this resistive layer.

The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is Tin (lead free) alloy.

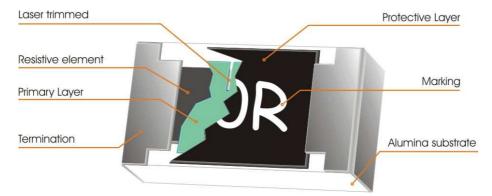


Fig 1. Construction of 2512, 2010 Chip-R

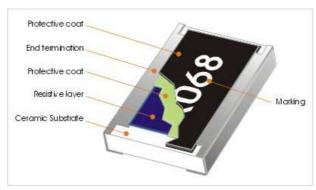


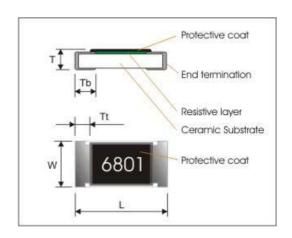
Fig 2. Construction of a 1218 Chip-R

QUICK REFERENCE DATA

Item		General Specification		
Series No.	WR18X(W)	WR20X(W)	WR25X(W)	
Size code	1218(3248)	2010 (5025),	2512(6432)	
Resistance Tolerance	±:	5% (E24); ±1% (E24+E9	6)	
Resistance Range	1Ω ~ 10M Ω , Jumper (0 Ω)			
TCR (ppm/°C) : 10Ω < Rn $\leq 10M\Omega$	± 100 ppm/°C	± 100 ppm/°C	± 100 ppm/°C	
1Ω≤ Rn ≤ 10Ω	± 200 ppm/°C	± 200 ppm/°C	± 200 ppm/°C	
Max. dissipation at T _{amb} =70°C	1W	0.75 W	1W	
Max. Operation Voltage (DC or RMS)	200V	200V	250V	
Max. Overload Voltage (DC or RMS)	400V	400V	500V	
Operation temperature	-55 ~ +155°C			
Storage temperature		5 ~ 40°C		

Test conditions for jumper (0 ohm)

Туре	WR18X(W)	WR20X(W)	WR25X(W)
Power Rating At 70C	1 W	3/4 W	1 W
Resistance	Max. 50mR	Max. 50mR	Max. 50mR
Rated Current	4.5 A	3.8 A	4.5 A
Peak Current	11 A	9 A	11 A
Operating Temperature	-55C ~ 155C	-55C ~ 155C	-55C ~ 155C


Note:

- 1. This is the maximum voltage that may be continuously supplied to the resistor element, see "IEC publication 60115-8"
- 2. Max. Operation Voltage : So called RCWV (Rated Continuous Working Voltage) is determined by

 $RCWV = \sqrt{Rated Power \times Resistance \ Value} \quad \text{or Max. RCWV listed above, whichever is lower.}$

MECHANICAL DATA (unit: mm)

TYPE	WR18	WR20	WR25
L	3.05±0.15	5.00±0.20	6.40±0.20
W	4.60±0.20	2.50±0.20	3.20±0.20
Т	0.55±0.10	0.55±0.10	0.60±0.10
Tt	0.45±0.25	0.65±0.25	0.65±0.25
Tb	0.50±0.25	0.60±0.25	0.90±0.25

DEC - 2016

MARKING

Each resistor is marked with a four-digit code on the protective coating to designate the nominal resistance value.

Example:

 $1R00 = 1\Omega$ $1001 = 1000\Omega$ $0000 = 0\Omega$

FUNCTIONAL DESCRIPTION

Product characterization

Standard values of nominal resistance are taken from the E96 & E24 series for resistors with a tolerance of $\pm 5\%$ & $\pm 1\%$. The values of the E24/E96 series are in accordance with "IEC publication 60063".

Derating curve

The power that the resistor can dissipate depends on the operating temperature; see Fig.3

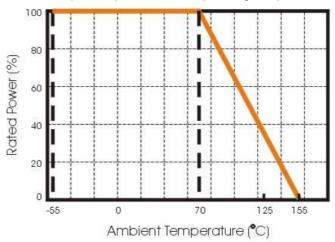


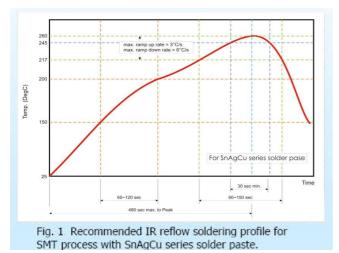
Figure 3. Maximum dissipation in percentage of rated power as a function of the ambient temperature.

MOUNTING

Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems.

Chip placement can be on ceramic substrates and printed-circuit boards (PCBs).

Electrical connection to the circuit is by individual soldering condition.


The end terminations guarantee a reliable contact.

SOLDERING CONDITION

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 235°C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in below.

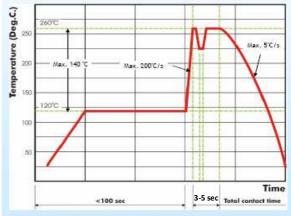


Fig. 2 Recommended wave soldering profile for SMT process with SnAgCu series solder.

The resistors have a catalogue number starting with .

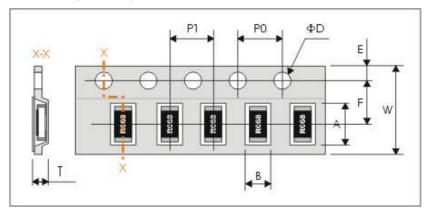
WR20	Х	472_	J	Т	L
Size code	Type code	Resistance code	Tolerance	Packaging code	Termination code
WR25 : 2512	X :	5% E24 : 2 significant digits	J : ±5%	T:7" Reel taping	L = Sn base (lead
WR20 : 2010	±5%: 1Ω-10ΜΩ	followed by no. of zeros and a blank	F : ±1%	(T:1218 10" Reel)	free)
WR18: 1218	±1%: 10Ω-1MΩ	4.7Ω =4R7_	P : Jumper	Q: 10" Reel taping	
	W :	10Ω =100_		G: 13" Reel taping	
	1% : <10Ω or	1% E24+E96: 3 significant digits			
	>1MΩ	followed by no. of zeros			
		102Ω =1020			
		37.4ΚΩ =3742			

TEST AND REQUIREMENTS(JIS C 5201-1: 1998)

Essentially all tests are carried out according to the schedule of IEC publication 115-8, category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days). The testing also meets the requirements specified by EIA, EIAJ and JIS.

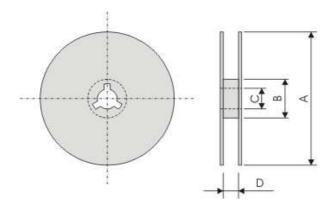
The tests are carried out in accordance with IEC publication 68, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to IEC 60068-1, subclause 5.3. Unless otherwise specified, the following value supplied:

Temperature: 15°C to 35°C. Relative humidity: 45% to 75%.


Air pressure: 86kPa to 106 kPa (860 mbar to 1060 mbar). All soldering tests are performed with midly activated flux.

TEST	PROCEDURE	REQUIREMENT
DC resistance Clause 4.5	DC resistance values measured at the test voltages specified below : $<10\Omega@0.1V,<100\Omega@0.3V,<1K\Omega@1.0V,<10K\Omega@3V,\\<100K\Omega@10V,<1M\Omega@25V,<10M\Omega@30V$	Within the specified tolerance
Temperature Coefficient of Resistance(T.C.R) Clause 4.8	Natural resistance change per change in degree centigrade. $\frac{R_2-R_1}{R_1(t_2-t_1)}\times 10^6 \; \text{(ppm/°C)} \text{$t_1:20\text{°C}+5\text{°C}-1\text{°C}$}$	Refer to "QUICK REFERENCE DATA"
	R ₁ : Resistance at reference temperature R ₂ : Resistance at test temperature	
Short time overload (S.T.O.L) Clause Clause 4.13	Permanent resistance change after a 5second application of a voltage 2.5 times RCWV or the maximum overload voltage specified in the above list, whichever is less.	Δ R/R max. ±(2%+0.1 Ω)
Resistance to soldering heat(R.S.H) Clause 4.18	Un-mounted chips completely immersed for 10±1second in a SAC solder bath at 260°C±5°C	no visible damage Δ R/R max. $\pm (1\%+0.05\Omega)$
Solderability Clause 4.17	Un-mounted chips completely immersed for 2±0.5 second in a SAC solder bath at 235 $^{\circ}\text{C}$ ±5 $^{\circ}\text{C}$	good tinning (>95% covered) no visible damage
Temperature cycling Clause 4.19	30 minutes at -55°C±3°C, 2~3 minutes at 20℃+5℃-1℃, 30 minutes at +155°C±3°C, 2~3 minutes at 20℃+5℃-1℃, total 5 continuous cycles	no visible damage $\Delta R/R$ max. $\pm (1\%+0.05\Omega)$
Load life (endurance) Clause 4.25	1000 +48/-0 hours, loaded with RCWV or Vmax in chamber controller 70±2°C, 1.5 hours on and 0.5 hours off	Δ R/R max. \pm (3%+0.1 Ω)
Load life in Humidity Clause 4.24	1000 +48/-0 hours, loaded with RCWV or Vmax in humidity chamber controller at 40°C±2°C and 90~95% relative humidity, 1.5hours on and 0.5 hours off	Δ R/R max. \pm (3%+0.1 Ω)
Bending strength Clause 4.33	Resistors mounted on a 90mm glass epoxy resin PCB(FR4); bending : 2 mm, once for 10 seconds	Δ R/R max. ±(1%+0.05 Ω)
Adhesion Clause 4.32	Pressurizing force: 5N, Test time: 10±1sec.	No remarkable damage or removal of the terminations
Insulation Resistance Clause 4.6	Apply the maximum overload voltage (DC) for 1minute	R≧10GΩ
Dielectric Withstand Voltage	Apply the maximum overload voltage (AC) for 1 minute	No breakdown or flashover
Clause 4.7		

PACKAGING


Plastic Tape specifications (unit :mm)

Туре	А	В	W	F	E
WR18	4.90±0.20	3.55±0.30			
WR20	5.50±0.20	2.80±0.20	12.00±0.30	5.50±0.10	1.75±0.10
WR25	6.90±0.20	3.60±0.20			

Туре	P1	P0	ΦD	Т
WR18	8.00±0.10			1.30±0.20
WR20	4.00±0.10	4.00±0.10	Φ 1.50 $^{+0.1}_{-0.0}$	MAX1.2
WR25	4.00±0.10			IVIAA 1.2

Reel dimensions

(unit: mm)

Symbol	Α	В	С	D
7" Reel	Φ178.0±2.0	Φ60.0±1.0	13.0±0.2	12.4.0±1.00
10" Reel	Φ254.0±2.0	Φ100.0±1.0	13.0±0.2	14.0±0.20
13" Reel	Ф330.0±2.0	Φ100.0±1.0	13.0±0.2	14.0±0.20

Taping quantity

WR20, WR25 by plastic tape taping 4,000 pcs per 7" reel; 8,000pcs per 10" reel; 16,000pcs per 13" reel! WR18 by plastic tape taping 3,000 pcs per 10" reel

APPROVAL SHEET

WR02X(W)

±5%, ±1%

Thick Film General purpose chip resistors

Size 0201

*Contents in this sheet are subject to change without prior notice.

FEATURE

- 1. Small size and light weight
- 2. High reliability and stability
- 3. Reduced size of final equipment
- 4. Suitable for high density print circuit board assembly
- 5. Higher component and equipment reliability
- Lead free product

APPLICATION

- Mobile phone
- PDA
- Camcorders
- Palmtop computers
- Hybrid module

DESCRIPTION

The resistors are constructed in a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate. The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to nominated value within tolerance which controlled by laser trimming of this resistive layer.

The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is a pure Tin.

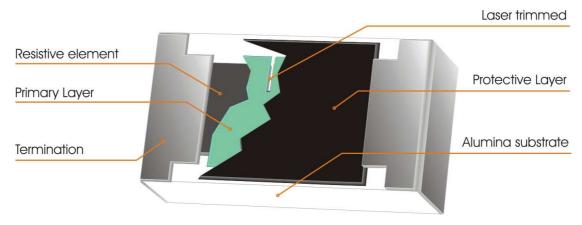
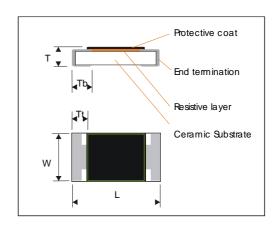


Fig 1. Construction of Chip-R WR02X

QUICK REFERENCE DATA


Item	General Specification		
Series No.	W	/R02X(W)	
Size code	02	201(0603)	
Resistance Range	1Ω~10MΩ (±5	% tolerance), Jumper	
	1Ω~ 10ΜΩ	2 (±1% tolerance)	
Resistance Tolerance	±1%	±5%	
	E96/E24	E24	
TCR (ppm/°C)	10Ω - 10MΩ, ≤±200		
	1 - 9.76Ω, +600~-200		
Max. dissipation @ T _{amb} =70°C	1/20 W		
Max. Operation Voltage (DC or RMS)	25V		
Max. Overload Voltage (DC or RMS)	50V		
Operation temperature	-55	5 ~ +125'C	

Note:

- 1. This is the maximum voltage that may be continuously supplied to the resistor element, see "IEC publication 60115-8"
- 2. Max. Operation Voltage : So called RCWV (Rated Continuous Working Voltage) is determined by $RCWV = \sqrt{RatedPower \times Resistance Value} \text{ or Max. RCWV listed above, whichever is lower.}$

DIMENSION(unit: mm)

	WR02X(W)
L	0.60 ± 0.03
W	0.30 ± 0.03
Т	0.23 ± 0.03
Tb	0.15 ± 0.05
Tt	0.10 ± 0.05

MARKING

WR02X(W) has no marking.

FUNCTIONAL DESCRIPTION

Product characterization

Standard values of nominal resistance are taken from the E24/E96 series for resistors with a tolerance of $\pm 5\%$ & $\pm 1\%$. The values of the E24/E96 series are in accordance with "IEC publication 60063"

Derating

The power that the resistor can dissipate depends on the operating temperature; see Fig.2

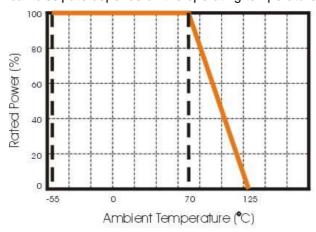


Figure 2. Maximum dissipation in percentage of rated power

As a function of the ambient temperature

MOUNTING

Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems.

Chip placement can be on ceramic substrates and printed-circuit boards (PCBs).

Electrical connection to the circuit is by individual soldering condition.

The end terminations guarantee a reliable contact.

SOLDERING CONDITION

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 235°C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3.

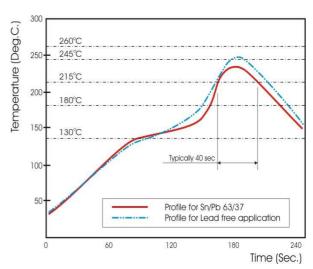


Fig 3. Infrared soldering profile for Chip Resistors WR02X(W)

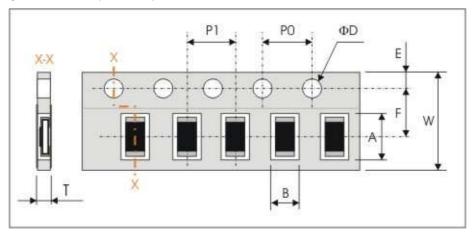
CATALOGUE NUMBERS

The resistors have a catalogue number starting with:

WR02	X	472_	J	Α	L
Size code	Type code	Resistance code	Tolerance	Packaging code	Termination code
WR02 : 0201	X : Normal W: 1% For <10Ω and >1MΩ	5% , E24: 2 significant digits followed by no. of zeros and a blank $4.7\Omega = 4R7$ $100\Omega = 101$ $10K\Omega = 103$ 1% , E24+E96: 3 significant digits followed by no. of zeros $100\Omega = 1000$ $37.4K\Omega = 3742$	J:±5% F:±1% P:Jumper	A: 7" Reeled taping (15Kpcs/Reel) T: 7" Reeled taping (10Kpcs/Reel) D: 7" Reeled taping (20Kpcs/Reel) H: 13" Reeled taping (50Kpcs/Reel) G: 13" Reeled taping (70Kpcs/Reel)	L = Sn base (lead free)

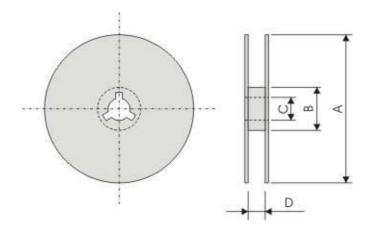
TEST CONDITION FOR JUMPER (0 $\Omega)$

Item	WR02
Power Rating At 70°C	1/20W
Resistance	MAX.50m $Ω$
Rated Current	1A
Peak Current within 5 sec	2.5A
Operating Temperature	-55 ~ +125°C


TEST AND REQUIREMENTS (JIS C 5201-1: 1998)

TEST	PROCEDURE / TEST METUOR	REQUIREMENT	
TEST	PROCEDURE / TEST METHOD	Resistor	0Ω
Electrical Characteristics	- DC resistance values measurement - Temperature Coefficient of Resistance (T.C.R)	Within the specified tolerance Refer to "QUICK	
JISC5201-1: 1998 Clause 4.8	Natural resistance change per change in degree centigrade.	REFERENCE DATA"	
	$\frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (ppm/°C)} t_1 : 20\text{°C} + 5\text{°C} - 1\text{°C}$		<50mΩ
	R_1 : Resistance at reference temperature (20°C+5°C/-1°C)		
	R₂: Resistance at test temperature (-55℃ or +125℃)		
Short time overload (S.T.O.L) Clause 4.13	Permanent resistance change after a 5second application of a voltage 2.5 times RCWV or the maximum overload voltage specified in the above list, whichever is less.	Δ R/R max. \pm (2%+0.10 Ω)	<50mΩ
Resistance to soldering heat(R.S.H)	Un-mounted chips completely immersed for 10±1second in a SAC solder bath at 260°C±5°C	Δ R/R max. \pm (1%+0.05 Ω) no visible damage	<50mΩ
Clause 4.18		Ů	
Solderability Clause 4.17	Un-mounted chips completely immersed for 2±0.8second in a SAC solder bath at 235°C ±5°C	95% coverage min., good tinnii visible damage	ng and no
Temperature cycling Clause 4.19	30 minutes at -55°C±3°C, 2~3 minutes at 20℃+5℃-1℃, 30 minutes at +125°C±3°C, 2~3 minutes at 20℃+5℃-1℃, total 5 continuous cycles	Δ R/R max. ±(1%+0.05 Ω)	< 50mΩ
Damp Heat	1000 +48/-0 hours, loaded with RCWV or Vmax in	10Ω≤R<1MΩ :	
(Load life in humidity) Clause 4.24	humidity chamber controller at 40°C±2°C and 90~95% relative humidity, 1.5hours on and 0.5 hours off	Δ R/R max. ±(3%+0.10 Ω) R<10 Ω , R≥1M Ω : Δ R/R max. ±(5%+0.10 Ω)	< 50mΩ
Load Life (Endurance)	1000+48/-0 hours; loaded with RCWV or V _{max} in chamber	Ditto.	
Clause 4.25	controller 70±2°C, 1.5 hours on and 0.5 hours off		
Bending strength	Resistors mounted on a 90mm glass epoxy resin	No visual damaged,	500
Clause 4.33	PCB(FR4), bending once 5mm for 10sec.	Δ R/R max. \pm (1%+0.05 Ω)	< 50mΩ
Adhesion	Pressurizing force: 3N, Test time: 10±1sec.	No remarkable damage or remo	val of the
Clause 4.32		terminations	

PACKAGING


Paper Tape specifications (unit :mm)

Series No.	А	В	W	F	Е
WR02X	0.67±0.05	0.37±0.05	8.00±0.20	3.50±0.05	1.75±0.10

Series No.	P1	P0	ΦD	Т
WR02X	2.00±0.05	4.00±0.05	Φ 1.50 $^{+0.1}_{-0.0}$	0.45±0.05

Reel dimensions

Symbol	А	В	С	D
7" Reel	Φ178.0±0.2	Φ60.0±1.0	13.0±0.2	9.0±0.5
10" Reel	Φ254.0±2.0	Φ100.0±1.0	13.0±0.2	9.0±0.5
13" Reel	Ф330.0±2.0	Φ100.0±1.0	13.0±0.2	9.0±0.5

Taping quantity and Tape material

- Chip resistors 10,000 / 15,000 / 20,000 pcs 7" Reel, Paper tape.
- Chip resistors 50,000 / 70,000 pcs 13" Reel, Paper tape.

APPROVAL SHEET

WR01X

±5%, ±1%

Thick Film General Purpose chip resistors

Size 01005

*Contents in this sheet are subject to change without prior notice.

FEATURE

- 1. Ultra small and high precision size and light weight
- 2. High reliability and stability
- 3. Reduced size of final equipment
- 4. Suitable for high density print circuit board assembly
- 5. Higher component and equipment reliability
- 6. Lead free product

APPLICATION

- · Mobile phone
- PDA, MP3, Ipod, iPHONE
- DSC, DVs
- Palmtop computers
- Mini module

DESCRIPTION

The resistors are constructed in a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate. The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to nominated value within tolerance which controlled by laser trimming of this resistive layer.

The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is a pure Tin.

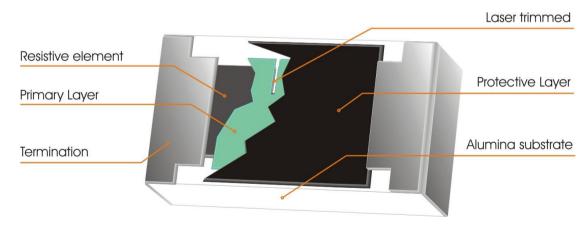
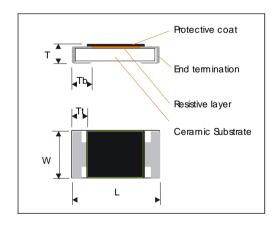


Fig 1. Construction of Chip-R WR01X

QUICK REFERENCE DATA

Item	General Specification		
Series No.	WR01X		
Size code	01005 (0402)		
Resistance Range	4.7Ω ~ 1MΩ (±5	%, ±1%), Jumper	
Resistance Tolerance	±1%	±5%	
	E96/E24	E24	
TCR (ppm/°C)	100Ω - 1MΩ, $\leq \pm 200$ ppm		
	10Ω - 91Ω, $≤ ±300$ ppm		
	4.7 - 9.1Ω, +600~ -200 ppm		
Max. dissipation @ T _{amb} =70°C	1/32 W		
Max. Operation Voltage (DC or RMS)	15V		
Max. Overload Voltage (DC or RMS)	30V		
Climatic category (IEC 60068)	55/1	25/56	


Note:

- This is the maximum voltage that may be continuously supplied to the resistor element, see "IEC publication 60115-8"
- 2. Max. Operation Voltage: So called RCWV (Rated Continuous Working Voltage) is determined by

 $RCWV = \sqrt{RatedPower \times Resistance \ Value}$ or Max. RCWV listed above, whichever is lower.

DIMENSION(unit:mm)

	WR01X
L	0.40 ± 0.02
W	0.20 ± 0.02
Т	0.13 ± 0.02
Tb	0.10 ± 0.03
Tt	0.08 ± 0.03

MARKING

WR01X has no marking.

FUNCTIONAL DESCRIPTION

Product characterization

Standard values of nominal resistance are taken from the E24/E96 series for resistors with a tolerance of $\pm 5\%$ & $\pm 1\%$. The values of the E24/E96 series are in accordance with "IEC publication 60063"

Derating

The power that the resistor can dissipate depends on the operating temperature; see Fig.2

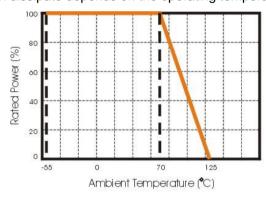
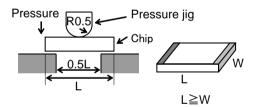



Figure 2. Maximum dissipation in percentage of rated power

As a function of the ambient temperature

MOUNTING

Due to its rectangular shape and ultra small size, Surface Mountable Resistors 01005 should be carefully handling by automatic placement systems. 01005 chip can withstand pressure force min. 1.9N by applying φ 0.18 pressure jig as shown drawing below. For mounting application, please contact Walsin group for details.

SOLDERING CONDITION

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 245°C during 3 seconds. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3.

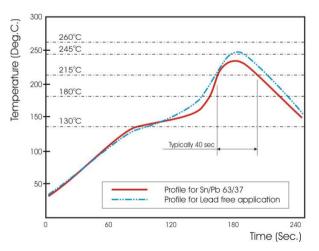
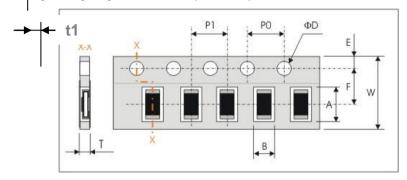


Fig 3. Infrared soldering profile for Chip Resistors WR01X

CATALOGUE NUMBERS

The resistors have a catalogue number starting with :

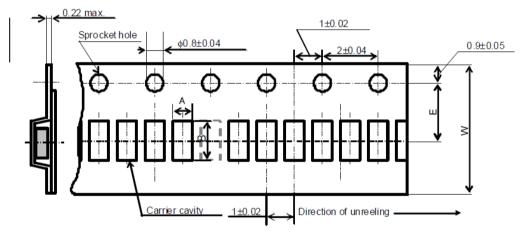
WR01	X	472_	J	D	L
Size code	Type code	Resistance code	Tolerance	Packaging code	Termination code
WR01 : 01005	X : Normal W : 1%, < 10ohm	5% E24 : 2 significant digits followed by no. of zeros and a blank 4.7Ω =4R7_ 10Ω =100_ 220Ω =221_ Jumper =000_ ("_" means a blank) 1% , E24+E96: 3 significant digits followed by no. of zeros 100Ω =1000 37.4 KΩ =3742	J:±5% F:±1% P:Jumper	D: 7" Reeled paper taping (20Kpcs/Reel) L: 7" Reeled embossed taping (35Kpcs/Reel)	L = Sn base (lead free)



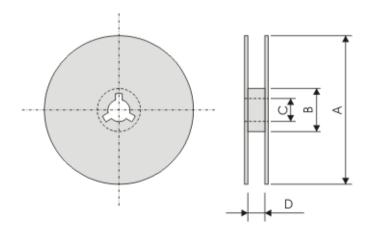
TEST AND REQUIREMENTS (JIS C 5201-1: 1998)

TEST	DROCEDURE / TEST METUOR	REQUIREMENT	
TEST	PROCEDURE / TEST METHOD	Resistor	0Ω
DC resistance Clause 4.5	DC resistance values measured at the test voltages specified below : $<10\Omega@0.1V, <100\Omega@0.3V, <1K\Omega@1.0V, \\ <10K\Omega@3V, <100K\Omega@10V, <1M\Omega@25V, <10M\Omega@30V$	Within the specified tolerance	<50mΩ
Temperature Coefficient of Resistance(T.C.R) Clause 4.8	Natural resistance change per change in degree centigrade. $\frac{R_2-R_1}{R_1\big(t_2-t_1\big)}\times 10^6 \ \ (\text{ppm/°C}) \ \ t_1:20^{\circ}\text{C}+5^{\circ}\text{C}-1^{\circ}\text{C}$ $\text{R}_1: \text{Resistance at reference temperature}$ $\text{R}_2: \text{Resistance at test temperature}$	Refer to "QUICK REFERENCE DATA"	N/a
Short time overload (S.T.O.L) Clause 4.13	Permanent resistance change after a 2 second application of a voltage 2.5 times RCWV or the maximum overload voltage specified in the above list, whichever is less.	Δ R/R max. \pm (1%+0.05 Ω)	<50mΩ
Resistance to soldering heat(R.S.H) IEC 60068-2-58: 2004	Un-mounted chips completely immersed for 10±0.5second in a SAC solder bath at $260^{\circ}\!C\pm5^{\circ}C$	Δ R/R max. ±(1%+0.05 Ω) no visible damage	<50mΩ
Solderability IEC 60068-2-58: 2004	Un-mounted chips completely immersed for 2±0.3second in a SAC solder bath at 235°C±5°C	95% coverage min., good tinnii visible damage	ng and no
Temperature cycling Clause 4.19	30 minutes at -55°C±3°C, 2~3 minutes at 20°C+5°C-1°C, 30 minutes at +125°C±3°C, 2~3 minutes at 20°C+5°C-1°C, total 5 continuous cycles	Δ R/R max. \pm (1%+0.05 Ω)	< 50mΩ
Damp Heat (Load life in humidity) Clause 4.24	1000+48/-0 hours, loaded with RCWV or Vmax in humidity chamber controller at 40°C±2°C and 90~95% relative humidity,	Δ R/R max. \pm (5%+0.10 Ω) no visible damage	< 50mΩ
Load Life (Endurance) Clause 4.25	1000+48/-0 hours; loaded with RCWV or V_{max} in chamber controller $70\pm2^{\circ}C$, 1.5 hours on and 0.5 hours off	Δ R/R max. \pm (5%+0.10 Ω) no visible damage	< 50mΩ
Endurance at the upper category temperature	125°C, no load, 1000 hours	Δ R/R max. \pm (5%+0.10 Ω) no visible damage	< 50mΩ
Bending strength Clause 4.33	Resistors mounted on a 90mm glass epoxy resin PCB(FR4), bending once 3mm for 10sec.	No visual damage, $\Delta \text{R/R max.} \pm (1\% \text{+} 0.05 \Omega)$	< 50mΩ
Adhesion Clause 4.32	Pressurizing force: 2N, Test time: 10±1sec.	No visual damage	•

PACKAGING


1. Paper Tape specifications (unit :mm)

Series No.	А	В	W	F	E
WR01X	0.45±0.03	0.24±0.03	8.00±0.20	3.50±0.05	1.75±0.10


S	Series No.	P1	P0	ΦD	t1	T
	WR01X	2.00±0.05	4.00±0.05	Ф1.50 ^{+0.1} _{-0.0}	0.31±0.03	0.36±0.03

2. Embossed Narrow Tape specifications (unit: mm)

Series No.	Α	В	W	E
WR01X	0.24±0.02	0.44±0.02	4.00±0.08	1.80±0.02

Reel dimensions

Symbol	Α	В	С	D
(unit : mm)	Ф180.0+0/-1.5	⊅ €0.0±4/.0	13.0±0.2	Paper tape: 9.0+1/-0
	Ψ160.0+0/-1.5	Ф60.0+1/-0	13.0±0.2	Emboss tape: 4.2±0.8

Taping quantity and Tape material

- Chip resistors 20,000 pcs/reel, Paper tape. Chip resistors 35,000 pcs/reel, Embossed tape.